AN/ ARC-73 or 51X-2B + 17L7

AN/ARC-73 Radio Set
Air band transceiver, built by Collins Radio Co.
AN/ARC-73 Radio set, $116-151.95 \mathrm{MHz}, 720$ chan, 50 KHz step, 80 preset, AM, $20 \mathrm{~W}, 28 \mathrm{VDC}$ at 8 Amps , Major components: T-879, R-1123 and C-4074.
AN/ARC-73A Radio set, $116-149.95 \mathrm{MHz}$ TX, $108-151.95 \mathrm{MHz}$ RX, 50 KHz steps, AM, $20 \mathrm{~W}, 28 \mathrm{VDC}$ at 8 Amps , Major components: T-879, R-1123 and C-4074.

The ARC73 radio set consists of
ARC-73 part COLLINS nr
R-1123A (51X-2B) receiver,
T-879 (17L-7) transmitter
C-4074 (614U-) control unit and
MT-2699 (390E-2) dual shockmount

The ARC73 will transmit/receive at:

17L7 Transmits on $118 \ldots 151.95 \mathrm{MHz}$ in 50 kHz steps (680 channels)
17L7A Transmits on $116 \ldots 149.95 \mathrm{MHz}$ in 50 kHz steps (680 channels) = MIL version ARC-73A $51 \mathrm{X}-\mathrm{B}(2)$ Receives $\quad 108 \ldots 151.95 \mathrm{MHz}$ in 50 kHz steps (880 channels)
The control panel has internal moveable end-stops for both minimum and maximum frequency :
MIN stop at 108 or 118 MHz , and MAX. stop at 135.95 of 151.95 MHz .
The receiver has two outputs. One for audio with a speech filter of $300 \mathrm{~Hz} \ldots 3900 \mathrm{~Hz}$,
the second output is for NAV signals like VOR or LOC with full bandwidth of 20 Hz to 11 kHz .
The transmitter has a carbon microphone input for 1 Vrms with a bandwidth of $300-3500 \mathrm{~Hz}$.

000000000000000004
$33000000000000000018)$

Control panel

ARC73 Interconnections ARC73

VHF Control Panels $614 \mathrm{U}-1,2,3,5,6,7$ or C4074/ARC-73

The 614 U panel has two independent 13 -wire frequency control switches, one for $51 \mathrm{X}-2$ receiver and one for the $17 \mathrm{~L}-7$ transmitter.

Switch pos.			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	$\begin{array}{\|c\|c\|} \hline 23 & 24 \\ \hline \text { Skip } \end{array}$	
			--------- NAV ---------					--------- COMM --------									--------- EXTENDED ----------									
Even	MHz	M	108	110	112	114	116	118	120	122	124	126	128	130	132	134	136	138	140	142	144	146	148	150	152	154
Odd	MHz	J	109	111	113	115	117	119	121	123	125	127	129	131	133	135	137	139	141	143	145	147	149	151	153	155
TRANSMIT	P2-7	A			X	X?		X				X	X		X		X				X	X		X		
17L-7 pin	P2-8	B				X			X				X	X		X		X				X	X		X	
	P2-9	C					X			X				X	X				X				X	X		X
	P2-10	D	X					X			X				X	X	X			X				X	X	
	P1-7	N															X	X	X	X	X	X	X	X	X	X
RECEIVE	6	A	X	X	X			X				X	X		X		X	X			X	X	X		X	
51X-2 pin	7	B		X	X	X			X				X	X		X		X	X			X	X	X		X
	8	C	X		X	X	X			X				X	X		X		X	X			X	X	X	
	9	D		X		X	X	X			X				X	X		X		X	X			X	X	X
	20	N	-	-x	- x	- x	- x	X	X	X	X	X	X	X	X	X										

Pin nr on 614U control panel	
	Rx ${ }_{\text {Tx }}$
MHZ select A	$1{ }^{20}$
B	221
C	322
D	423
Fract. MHz select E	524
F	$6 \quad 25$
G	726
H	827
Odd MHz J	928
50 kHz K	$10 \quad 29$
00 kHz L	1130
Even MHz M	1231
Extended N	$13 \quad 32$
$10 \mathrm{k} \Omega$ Squelch pot	1433 DCD
150Ω Vol.pot top	$15 \quad 34$ power switch to 19
Vol.pot wiper	1635 gnd
Vol pot cold	1736 Dial lamps
gnd	1837 Dial lamps gnd

$\square \quad$ Pink area not accessible
Fractional MHz control lines E,F,G,H (same code for Rx and Tx) :

pin 33 connects to ground when DCD selected and freq=118,119,120,127,128 or 129 MHz pin 33 connects to ground when DCD selected and fr
pin 34 connects to pin 19 when powerswitch is "ON"

Positions marked " X " above are connected to ground in the control pane
Postions not marked " X " are interconnected in the control panel and not to ground.
614U-6 has extra outputs for Glideslope receiver channel selection when freq=108 or 109.xx mc 614U-6 has extra outputs for Glideslope receiver channel selection when freq=110 or 119.xx mc
614U-7 has extra outputs for DME transceiver channel selection when freq $=110 \ldots$ 117.xx mc

51X-2B VHF RECEIVER

MIL name R-1123A / ARC-73

The receiver covers $108-151.95 \mathrm{MHz}$ in 50 kHz steps, 880 channels Input Sensitivity 3 uV Antenna impedance 52Ω.
Output 100 mW into 500Ω (7 Vrms)
The receiver is a double superhet, with one RF stage. The RF stage is tuned with a four-fold variable capacitor 1st LO $97.975-139.975 \mathrm{MHz}$ in 2 MHz steps (22 Xtals), first IF $10-12 \mathrm{MHz}$, variable, permeability tuned
$2^{\text {nd }}$ LO $10.525-11.475 \mathrm{MHz}$ in 50 kHz steps (20 Xtals) In total $22 \times 20 \times 2=880$ channels
second IF 500 kHz fixed
The Xtals of the second LO are used twice: once 500 kHz below the first IF signal, and in a second turn of the selector at 500 kHz above the first IF signal. The result is a 500 kHz signal that is filtered in a Collins
mechanical filter. The transfer function on a linear scale is shown below. On a log scale, the passband ripple is 6 dB , the signal is 60 dB down outside $460 \ldots 540 \mathrm{kHz}$.

Fig 1. Transfer function of the 500 kHz mechanical filter on lin-lin scale.
 The ripple in the passband is possibly too high due to the 50 ohm generator impedance, instead of 5 k as specified by Collins. Load was 100 k as specified.

AGC

Automatic gain control is fast for the communication signals, but must be slow for navigation as the modulation frequency is low, 30 Hz for the VOR, 90 Hz or 150 Hz for LOC. This is done automatically when pins 6 and 7 on the noval socket XK1 on the front are interconnected.

The AGC voltage on TP5 with squelch adjusted at $5 u \mathrm{~V}$ is ..V at 80 dBm input and \ldots V at -20 dBm input.

ATC output.

The receiver has a wide-band output for the VOR signals (30 Hz and 11 kHz) or LOC signals (90 and 150 Hz). This output is not squelched nor clipped. Three contacts are available that close to ground on the ATC clipped. Three contacts are available that close to ground on the ATC
channels ($108-117.95 \mathrm{MHz}$), one can be used to slow down the AGC channels ($108-117.95 \mathrm{MHz}$), one can be used to slow down the AGC
response, another to select horizontal (VOR/LOC) or vertical (comm.) response,
antenna

Squelch and audio

The squelch tube is controlled by the AGC voltage. The audio stage has a sharp speech filter with $300-3700 \mathrm{~Hz}$ passband (see below)
The filter peaks are at 320,1400 and 3000 Hz . The peak at 50 Hz was due to mains hum in my test setup.

Speachfilter response on log-log scale

Front connector XK

A 9-pin noval connector is used in conjunction with an external VOR/LOC decoder like the Collins 344B-1 Instrumentation Unit

Rear connector XK2

28 pin DPA connector with one coax input for the antenna signal Connects to the remote control panel and power source.

Power supplies, filaments

The 51X-2 was available with either AC input ($115 \mathrm{~V} / 400 \mathrm{~Hz}$) or DConly input. The only difference is the power supply module
All filaments are in parallel in the AC version, but in the DC version they are connected series/paralle. A 5 ohm dropper resistor is mounted in the main chassis to reduce the 27.5 V to $4 \times 6.3=25.2 \mathrm{~V}$ The DC supply has a de-spiker to block spikes up to 70 V on the DC input, and a 5 W inverter to provide $150 \mathrm{~V} / 45 \mathrm{~mA}$.

You can mail me at a.k.bouwknegt -at- home.nl

ARC-73 (Collins 17L-7) Transmitter tuning

Mechanical Tuning Unit
The mechanical tuning system is the backbone of the RF module of the 17L-7. It consists of a 27 Vdc motor, two electromechanical clutches K2 and K3 to transfer motion to the crystal selector shafts of the high frequency oscillator (HFO) and the low Frequency oscillator (LFO).
The 18 HFO crystals are in 1 MHz steps, the 20 LFO crystals have 50 kHz steps.
The LFO and HFO signals are mixed, and a multistage tuned filter selects the carrier signal from the result. The variable capacitor (varco) shaft of this filter is driven from a mix of the HFO and LFO shafts.

The 18 crystals of the HFO are used twice: once above the $T x$ frequency (Lo band), and once below the Tx frequency (Hi Band).

Over the whole Lo + Hi band, the varco of the tuned filters makes only a half turn.

So, the HFO crystal selector makes 4 turns for
one full turn of the varco.
Microswitch S4 is on the varco shaft and forces the motor to skip the unused half turn. Microswitch S3 is on a shaft with twice the speed, and used to select LoBand or HiBand. In HiBand, the last two positions (152 and 153 MHz) are skipped.
In Lo Band, the LFO frequency is decreasing with increasing transmit frequency, while
in Hi Band, the LFO frequency is increasing with increasing transmit frequency.
Relay K1 near the LFO crystals reverses the sequence in the Loband case.

The DCD relay connects MTU pins via the rear plug to the control panel, depending on the SCS / DCS mode. When P1-21 is left open, normal mode is selected (same frequency for receive and transmit). When P1-21 is connected to ground (Dual channel mode) then the transmit frequency is 6 MHz above the receive frequency for the first 6 columns in the table below, or 12 MHz lower in case of the last 3 columns. The control panel allows 118-119-120-127-128-129 MC (Rx) only for DCD, so all transmit 6 MHz above the receive frequency.
The coding of the MHz switch S1A is as follows. " X " means no connection (that output is open.)

Table 2 DCD relay

Example: in normal mode, with line A connected to ground in the control panel, the motor stops when both MTU pins 11 and 12 are open, i.e. at 118, 126, 128 and 132 etc MHz

$\begin{array}{\|l\|l} \hline \mathrm{m} & 118 \\ \mathrm{c} & 119 \\ \mathrm{c} & 136 \\ \hline \end{array}$	$\begin{aligned} & 120 \\ & 121 \\ & 138 \\ & 139 \end{aligned}$	$\begin{aligned} & 122 \\ & 123 \\ & 140 \\ & 141 \end{aligned}$	$\begin{aligned} & 124 \\ & 125 \\ & 142 \\ & 143 \end{aligned}$	$\begin{aligned} & 126 \\ & 127 \\ & 144 \\ & 145 \\ & \hline \end{aligned}$	$\begin{aligned} & 128 \\ & 129 \\ & 146 \\ & 147 \end{aligned}$	$\begin{aligned} & 130 \\ & 131 \\ & 148 \\ & 149 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 132 \\ & 133 \\ & 150 \\ & 151 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 134 \\ 135 \end{array}$	$\begin{array}{\|l\|} \hline \text { MTU Pins } \\ \text { used in } \\ \text { normal } \\ \text { norme } \end{array}$	Pin on P2 Rear side connector
$\begin{array}{\|l\|l\|} \hline \mathrm{A} & \mathrm{x} \\ \mathrm{~B} & \\ \mathrm{C} & \\ \mathrm{D} & \mathrm{x} \end{array}$	x	x	x	x	$\begin{aligned} & \hline \mathrm{x} \\ & \mathrm{x} \end{aligned}$	X x	$\begin{array}{\|l\|} \mathrm{x} \\ \mathrm{x} \\ \hline \end{array}$	x	$\begin{array}{\|l\|} \hline 11 \& 12 \\ 18 \\ 20 \\ 14 \& 16 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & 10 \end{aligned}$

m 118 c 119 c 136 137 	$\begin{aligned} & \hline 120 \\ & 121 \\ & 138 \\ & 139 \\ & \hline \end{aligned}$	$\begin{aligned} & 122 \\ & 123 \\ & 140 \\ & 141 \end{aligned}$	$\begin{aligned} & 124 \\ & 125 \\ & 142 \\ & 143 \end{aligned}$	$\begin{aligned} & 126 \\ & 127 \\ & 144 \\ & 145 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 128 \\ & 129 \\ & 146 \\ & 147 \\ & \hline \end{aligned}$	$\begin{aligned} & 130 \\ & 131 \\ & 148 \\ & 149 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 132 \\ & 133 \\ & 150 \\ & 151 \end{aligned}$	$\begin{aligned} & 134 \\ & 135 \end{aligned}$	MTU Pins used in Dual chann mode	$\begin{aligned} & \text { Pin on P2 } \\ & \text { Rear side } \\ & \text { connector } \end{aligned}$
$\begin{array}{\|l\|l\|} \hline \mathrm{A} & \\ \mathrm{~B} & \mathrm{X} \\ \mathrm{C} & \mathrm{x} \\ \mathrm{D} & \\ \hline \end{array}$	x	x	X x	x	x	x	x	x	$\begin{aligned} & 14 \& 17 \\ & 19 \\ & 12 \& 13 \\ & 15 \end{aligned}$	$\begin{array}{\|l} \hline 8 \\ 9 \\ 10 \end{array}$

Example: Control set at 124 MHz dual channel -> receive 124 , Transmit at 130 MHz

